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W Questions regarding the PMNS Matrix Elements
13 Sensitivity

+:OcP Sensitivity A

+:V=Mass Hierarchy

s:Resolving degeneracies => Need Syst.Precision

- (Nu -vs- NuBar <= Ocr)
®Beyond PMNS

@23 = 45707 v

+CPT Violation 7
s:High Am**2 Oscillation ?

s:Phenomenon that defies the Zeitgeist

N The familiar, beautiful neighborhood
s X-secs, Sin**2(0w): precision comparable to Colliders?

+:Sum rules, Isospin Physics (Nu -vs- NuBar < 6CP)

s:Heavy neutrinos
“§ ® © 06 06 & 0 00

s:Rewriting the V text-book



Reinventing the Near Detector

4 Use of "identical” small detector at the near site is insufficient for future LBL
experiments:

o OV (E,,0,) different at Near & Far sites;
e Impossible to have “identical” detectors, for O(100kt), at the projected luminosities;
o Different compositions of event samples (v,,,v,,v., NC, CC)

— Coarse resolution dictated by O(100kt) and different flux at Near-vs-Far tell us
that the Identical Near Detector concept is insufficient

4 Need a high resolution detector at the Near-Site to measure systematics affecting the
Far-detector:

ssMeasure over the full range of FD

o V,,VU, V| |Ve|content vs. B, and 0,;
o v-induced 7% /K* /p/7® in CC and NC interactions; #sBackground to the V(Bar)e/[-Appearance

o Quantitative determination of E, absolute energy scale; gV -ysO V(Bar) Interactions

e Measurement of detailed event topologies in CC & NC.
— Provide an ‘Event-Generator’ measurement for LBLv

4 High Resolution near detectors at future LBL facilities are natural heirs to the
precision neutrino scattering programme

Can they achieve sufficient precision to complement the Colliders?

Sanjib R. Mishra
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Straw Tube Tracker (STT)

ssBest performance of the 4-options

#$3.5m x 3.5m x 7m STT (7 tons; p=0.lgm/cm*3)

4TT-ECAL
Dipole-Field (0.4T)
HU-Detector (RPC) in Dipole and Downstream

Transition Radiation »>e-/e+ID =Yy

dE/dx »> Proton, m+/-, K+/-
Magnet/Muon Detector »> u+/-

#sH20 & D20 Targets (=x5 FD-Stat) =2 WC-FD

{QE-Proton ID = Absolute Flux measurement}

ssPressurized Ar-target (=x5 FD-Stat) =2 LAr-FD




Scintillator Tracker (ST)

#$3m x 3m x 5m Sci-Tracker (7 tons; p=Igm/cm?3)

4TT-ECAL
Dipole-Field (0.4T)
HU-Detector (RPC) in Dipole and Downstream

&5 H20 Target (=x5 FD-Stat) =2 WC-FD

ST ECAL Muon Ide



Coh-110

Coherent nt® production
(Minerva simulation)

g o gy’ A Question of Resolution...
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(Hits shown by "X’ are not used in the track-fit)



LAr TPC Tracker (TPCT)

#31.8m x 1.8m x 3m LAr (13 tons)

4TT-ECAL
Dipole-Field (0.4T)
HU-Detector (RPC) in Dipole and Downstream

= LAr-FD

Muon Ide

ECAL TPC



Membrane LAr TPC (LArM)

#35m x 5m x 10m LAr (350 tons)
with membrane cryostat; B-Field (0.4T) = I-Sign

=2 LAr-FD

TPC



Why Tracker (ECAL/u-Detector) within a B-Field?

ssConstrain Ev-scale
#sND must measure the full range of Ev & Ov else the sensitivity of FD will be compromized

#3In 0.5 <Ev< | GeV, the Acceptance = 35% for euS37"O

In 2.0 <Ev< 3 GeV, the Acceptance = 75% for euS37’\O

ssFor LBNE, the Maximal sensitivity for Ocris Ev = |.5 GeV

#sSTT will be able to distinguish ~/U+ down 0 ~0.3 GeV

=2 ND must measure and ID leptons (at least ) emerging at large angles;

J

Must measure differences in V & Anti-V interactions which might fake a “ Ocp"
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Why track protons?

ssPrecision determination of Vu-QE requires proton-tracking.

= QE in H20 & D20 will provide an Absolute-Flux measurement:

Need proton-tracking & resolution to point to the H20 & D20 vertex
= (M-, p) provide an in situ constraint on the Fermi-motion and hence on the Ev-scale

= QE interactions dominant in Low-EVv: Need accurate parametrization of QE

#:STT option will have a large proton sample from A®+pTT

sslf an ND is able to accurately measure proton, it will be able to measure
the TT- & TT+ in NC and CC:
the largest source of background to the Vyu & Anti-Vy disappearance

= ND must track & ID QE-protons



Vu-QE Sensitivity Calculation

“Example of a V-interaction in a high-resolution ND as a calibration of FD

&Key is 2-Track (U, p) signature s Proton reconstruction: the critical issue
(#dE/dx in but not used in the analysis)

“Use Nomad data/MC as calibration

s lInput | Expert | SubDetectors
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Figure 14: A r,,-QE candidate in NOMAD

L1l

QE Candidates in NOMAD:STT will have x6 more points for protons
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Figure 15: A r,,-QE candidate in NOMAD
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RECONSTRUCTION OF CC QUASI-ELASTIC INTERACTIONS

v, CC QE in HiResMv at LBNE

SR PURITY

“1‘”‘1.5””2””2.5‘ ‘3””3.5‘”‘4””4.5””5
Energy (GeV)

4 Protons easily identified by the large
dE/dx in STT & range

—> Minimal range to reconstruct p track
parameters 12cm = 250 MeV

4 Analize BOTH 2-track and 1-track
events to constrain FSI Fermi motion
and nuclear effects

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject DIS & Res backgrounds

— On average ¢ = 52% and n = 82%
for CC QE at LBNE
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Why measure and ID e- & e+?

&3 Measurement of TT0 in NC and CC via y®*e-e+ measured in the tracker

{0 ;

ssMeasure beam Ve and Anti-Ve

= Difference between (Ve from ) & (anti-Ve from KOL) extrapolations to FD from ND

= A must if there are large-Am”'2 oscillations

&% Measurement of absolute flux

#: To discover Ocr we ought to ensure that Ve & anti-Ve events are as expected

=2 ND must measure 110 and Ve & anti-Ve ' e- -vs- e+
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A v, CC candidate in NOMAD
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#s x12 higher sampling in STT (HiResMnu)

s x4T1T calorimetric and p converage
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Kinematics in STT

= Pt-Vector Mez

Isurement

(usc-

th hC

e: Transition Radiation

Out of plane

y

1 » “h”’=>Vector Sum of Tracks

14



Y

Fraction
o
({e]

0.8

0.7

IDENTIFICATION OF v, CC INTERACTIONS

SR EERs

~ emmv

Ve CC in HiResMv at LBNE
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4 The HiResMv detector can distinguish
electrons from positrons in STT

— Reconstruction of the e’s as
bending tracks NOT showers

4 Electron identification against charged
hadrons from both TR and dE/dx

—> TR 7 rejection of 1072 for e ~ 90%

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject non-prompt backgrounds
(7 in v, CC and NC)

—> On average ¢ = [88% and n = 99%
for v, CC at LBNE

s VeBar-CC Sensitivity:
If we keep the signal efficiency at ~55%, then purity is about 95%



Absolute Flux using v-e Elastic NC Scattering

& Using the Weak Mixing Angle (0.238) at Q~0.1 GeV (known to <|% precision)
= 0(Vxe-NC) known = Absolute-§(Vx)

® v-e ®+ Signal: Single, forward e-
Background: NC induced 110 ®* Yy ®* e- (et invisible): charge-symmetric

® Two-step Analysis:  #Electron-ID: TR # Kinematic cut: C=Pe(|-cosOe)

Simulation of charged hadron background.
(use LBNE Flux)

negative hadrons
® signal
positive hadrons

9 (Rad.)

6 . ¢ (= P.(1 —cos 9))
Background charge symmetric & benign
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Events

Absolute Flux using V-e Elastic Scattering

® Shape of Enu using (Ee, Oe):

& The precision on relative V-flux (shape) is worse than
in that determined using Low-V0 technique
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Shape of Vu or Anti-Vu Flux using Low-Vo Method
v,, Low-Nu0 Fit, ND at 500m Relative Vyu-Flux Measurement using Low-V0 @ LBNE
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TT0-Reconstruction

& Clean TTO- and Y-signatures in HiResMnu(STT)

& v-NC & CC »+ TT0 »+ yy
~50% of the y »+ e+e- will convert in the STT, away
from the primary vertex. We focus on these

Efficiency

& y-ldentification:
* e-let ID: TR
* Kinematic cut: Mass, Opening angle

> At least one converted Y in STT
(Reconstructed e- & et;
e- or et traverse 26 Mods)
>Another Y in the
Downstream & Side ECAL

6

E 0(Ge

8

10
V)
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MEASUREMENT OF THE RATIO R, <Search/Impact of Large-am**2 Oscillation

4 Independent analysis of neutrino data and anti-neutrino data due to possible
differences following MiniBooNE/LSND results

— Need a near detector which can identify e™ from e~

4 Measure the ratio between the observed v,(v.) CC events and the observed v,(v,,) CC
events as a function of L/ E,,:

#of Ve.N — e X

Rep(LI(EV)) = L of v N ,u_X(L /(EV))
1L

. v,N — et X

Ron(LI(EV)) = Z s; e o (LIEV))

4+ Compare the measured ratios R.,,(L; EV and R., (L, EV with the predictions from the
low-vy flux determination assuming no oscillations <= Benefit from External K+/Tr+ K-/Tr. KOL/K+

4 Same analysis technique used in NOMAD to search for v,, — v, oscillations.
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hinment of the events so reducing the usable statistics.

Measurement STT |Sci+uDet | LAr|{LArB|LArB+Sci+uDet |LAr+STT
In Situ Flux Measurements for LBL:
ve  — ve Yes No Yes | [No No Yes
vpe — U Ve Yes Yes No | Yes Yes Yes
v,n — i pat Q°=0 Yes Yes No | No Yes Yes
Low-r9 method Yes Yes No | Yes Yes Yes
ve and v, CC Yes No No!| Yes Yes Yes
Background Measurements for LBL:
NC cross sections Yes Yes No | Yes Yes Yes
7°/~y in NC and CC Yes Yes Yes | Yes Yes Yes
1 decays of &, K+ Yes No No| | Yes Yes Yes
(Semi)-Exclusive processes| Yes Yes Yes | Yes Yes Yes
Precision Measurements of Neutrino Interactions:
sin® 0w v N DIS Yes No No | No No Yes
sin? 0w ve Yes No Yes| No No Yes
As Yes Yes Yes| Yes Yes Yes
vMSM neutral leptons Yes Yes Yes | Yes Yes Yes
High Am? oscillations Yes No No | Yes Yes Yes
Adler sum rule Yes No No | No No Yes
D/(p+n) Yes No No | No No Yes
Nucleon structure Yes Yes Yes| Yes Yes Yes
Nuclear effects Yes Yes Yes| Yes Yes Yes

TABLE XXVIII: Summary of measurements that can be performed by different ND reference configurations.
Summary page from the Short-Baseline Physics Report: Roberto Petti




Synergy between the ND-Design for LBNE and Nu-Factory

s A small group actively working on the ND-design for the Nu-Factory

#s Although the Nu-Factory beam (4 #* Ve V) simpler than LBNE,
the requirements on systematic precision are much higher

#s The LBNE-STT (HIRESMNU) is one of the candidates under consideration

= Joint effort will benefit all

22



Outlook
45 An ambitious V program at Fermilab

45 The LBNE-ND aims to provide precise constraints on the systematic

errors affecting the V oscillation physics:
= Flux of Ve, Vu & Anti-(Ve, Vy)

= Absolute Ev-scale

= Measurement of TT0/+/- --- backgrounds to oscillation-signal --- in NC and CC

= Difference between V & Anti-(V) interactions

83 A rich short-baseline V-physics

85 We welcome, and need, new institutions/collaborators

23



Backup Slides
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Meson-Exchange Currents predict a much

L]

9% e =200 MeV

-
== UFr
> 60
& 50
— 40 +
=
(*

(b) 4

larger fraction of the incident neutrino

energy going into the hadron sector. Neutrino
& antineutrino interactions may have different
energy corrections up to ~300MeV and may
create a spurious "CP-violating" effect,
especially at 1.5 GeV where the sensitivity is
maximum.

400 200 300 400
(6}

0

One body RFG

R; = transverse response function

Meson exchange

Correlation
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"RADIATOR"

STRAW LAYER

STRAW LAYER

'''''''
.....

GLUE

STT MODULE

C REINFORCEMENT

B=04T
Density = 0.1 g/cm3, 85% in the radiator foils.

Transition Radiation »> e-/e+ ID = y (w. Kinematics)

dE/dx »> Proton, 11+/-, K+/- |ID
Magnet/Muon Detector »> +/-

(SOAA) WALSAS NONIN
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HiResMv for B=0.4T, p=0.1g/cm’

Resolutions in HiResMnu sYe
I T e e
p = 0.1gm/cm”3 0

@ | i 3 3 3 3 3 3 3 3
Space point position = 200 Eoor

- - o I ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ
Time resolution = Ins o6 - S N S
Y S W T B W

CC-Events Vertex: A(X,Y,Z) = O(100p) : MUON MOMENTURL. L2
o4~ MUONMOMENTUM, L=2m _
Energy in Downstream-ECAL = 6%/\E - S
N s s

U-Angle resolution (~5 GeV) = O(| mrad)
T ELECTRON ENERGY 0.06VE
U-Energy resolution (~3 GeV) ~ 3.5% 0.01 [

e-Energy resolution (~3 GeV) ~ 3.5% PN I U D DS PO DU DU DO IO

1 2 3 4 5 6 7 8 9 ‘10
Energy/Momentum (GeV)

WSensitivity Calculations:
Parametrized calculation

Repeat with NOMAD configuration and checked against the Data and Geant-MC
(Agree within 15%): ReWt
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Detector Performance

Small Scintillator
MicroBooNE Magnetized STT
Tracker
LAr
\F/'duc'a' 70T 20T 7T 3T
olume
Vertex Res. 1 mm 1 mm 0.1 mm 3 mm
Angular Res. 10 mrad 10 mrad 2 mrad 10 mrad
E. Res. 10% 10% 3.5% 10%
E. Res. 10% 10% 6%/ JE 10%
v, /v, ID No Yes Yes Yes
— Yes (E<1.5
ID
v, [V, No CeV) Yes No
0
NCr'/CCe 1% 1% 0.1% 1%
Rej.
NCy/CCe Rej. 1% 1% 0.2% 1%
Egj“/cce 0.1% 0.1% 0.01% 0.1%
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= constraint on Ev Scale
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Flux: ... Always the Flux

Nlnverse Muon Decay: Vx + e-+>Vix + - { )
Vu (t-channel) or Anti-Ve (s-channel)

Elegant, Simple but steep threshold (calculable), Evz11 GeV
Systematic Advantage of STT lies in reducing systematic errors incurred by

CCFR or CHARM-II in extrapolating the background to the signal T=Pe(l-cosOe)=Cut

wV-Electron Elastic Events: Vx + e-->Vx + e- { }
Different processes: Ve€-CC, Anti-Vee-CC, & all flavor Vxe-NC

Different Ee spectrum

Focus on Vpe-NC: Experimentally the most challenging
* The Weak Mixing Angle (0.238) at Q~0.1 GeV is known to <1% precision

= O(Vxe-NC) known = Absolute-d(Vx)
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MEASURING NUCLEAR EFFECTS (Water,Ar,..)

A TARGET (0.15 X0)

4.0 cm

4 Measure the A dependence (Ca, Cu, H;O, etc.) in
addition to the main C target in STT:

e Ratios of F5 AND xF5 on different nuclei;

e Comparisons with charged leptons.

4 Use 0.15X, thick target plates in front of three
straw modules (providing 6 space points) without
radiators. Nuclear targets upstream.

e For Ca target consider CaCQOs or other compounds;

e | OPTION |: possible to install other materials (Pb, etc.).

X times

South Carolina Group



What we build on: NOMAD DATA

kS| - D 160012
54500 - Keviar Entries 30831
Q % skins | 3000 Mean 0.4982
1 / \ | RMS 0.1246E-01
4000 I s
3500 E l E [ El = 2500
wl | IE T8 1 )
3 > & 3 2000
g g £
2500 - = i = = .
.
2000 |- i i 1500
1500 '*1:
- ] 1000
1000 - a
L -
- i 500
0 | | gl ssgliavidles i g i o g ' ag s ¥t 3 LAy e
5 3 -2 -1 0 1 2 3 4 5 o L v v v b v e e e b
V |:> Z(cm) 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53
MKs EKs.G.1.0
Neutrino radiography of one drift chamber Reconstructed K" mass

4+ NOMAD: charged track momentum scale known to < 0.2
hardonic energy scale known to < 0.5%

4 HiResMuv: | 200 x | more statistics and | 12 x | higher segmentation

Sanjib R. Mishra

uscC
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A v, CC candidate in NOMAD
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LOW-1y METHOD <Shape of Vu or Anti-Vu Flux

4 Relative flux vs. energy from low-1, method:

N(E, : Egap < 1°) = C(I)(Ey)f(E—V)

the correction factor f(V°/E,) — 1 for 1’ — 0.

= Need precise determination of the muon energy scale
and good resolution at low v values

4 Fit Near Detector v,,, 1, spectra:

e Trace secondaries through beam-elements, decay;

e Predict v,,v, flux by folding experiental acceptance;

o Compare predicted to measured spectra => x? minimization
d’o

depapz = [@r)g(Pr)h(er, Pr)

o Functional form constraint allows flux prediction close to E, ~ V.

4+ Add measurements of ¥/ K* ratios from hadro-production experiments to the
empirical fit of the neutrino spectra in the Near Detector

uscC
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Systematic-Errors in Low-VO Relative Flux: Vu_& Anti-Vu

«Variation in VO-cut

«Variation in VO-correction
ssSystematic shift in Ehad-scale

«Vary 0(QE) £10%
«Vary O(Res) *10%
«Vary a(DIS) £10%
s:Vary functional-forms
ssSystematic shift in Emu-scale

s«sBeam-Transport (ND at 1000m)

Includes:
*Alignment (1.0mm)
*Horn Current (0.5%)
*Inert material (0.25\)

*Proton spot size
= Revisit these (?) & Investigate ND @ 500m
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QE

Quasi-Elastic Scattering

* new, modern measurements of QE o at these energies (on '2C)

‘P
£

)
o

-39
x10
16 Fermi Gas with M,=1.35 GeV
14E- {. Fermi Gas with M,=1.03 GeV.
125 fl
10
8
6 — *  MiniBooNE
4 * NOMAD  Eur.Phys.J.C63:355-381,2009
2 — SciBooNE
0 — taal . I
-1 RFG
10 1 10 E;"™ (GeV)

(T. Katori, Nulnt09)

L Discrepancy?

~ 30% difference between QE o
measured at low & high E on 12C ?!

?
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Measurement of exclusive topologies

4+ High resolution allows
excellent reconstruction of
exclusive decay modes

+ NOMAD performed
detailed analysis of strange
particle production: A, A

+ A resonances in CC & NC
are easier to reconstruct

+ Constraints on NC decay
mode A — N~

0.25

0.2

0.15

Pt

(GeV) |

0.1 =

0.05

CC-Data: Armenteros Plot

T

~ Lam-Bar Lambda

B /‘ 1 1 1

1 ‘ 1 1 1 1 1 1 1 1 1 1 1
—0.5 O 0.5 1

®Lambda »> Calibration of Proton P-Asym

Reconstruction
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